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COMMENT

Critical properties of the XXZ chain in an external
staggered magnetic field

Kiyomi Okamoto† and Kiyohide Nomura‡
Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152,
Japan

Received 7 September 1995

Abstract. We comment on the recent work of Alcaraz and Malvezzi on the critical properties
of the S = 1

2XXZ chain in staggered magnetic field. The method of determining the phase
boundary from the finite-size numerical data is also discussed.

Recently Alcaraz and Malvezzi (AM) [1] studied the ground-state phase diagram of the
S = 1

2XXZ spin chain in external homogeneous and staggered magnetic fields described
by

H(1, h, hs) = − 1
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i and σ z
i are Pauli matrices,1 is the anisotropy parameter andh (hs) is

the uniform (staggered) magnetic field. They found that the ground-state phase diagram
is composed of the antiferromagnetic (AF) phase, the massless (ML) phase and the
ferromagnetic (FE) phase. Although we agree with their schematic phase diagram of
H(1, h, hs) (figure 5 of [1]), we want to comment on the nature of the ground-state phase
transition and also on the method to determine the phase boundary from the finite-size
numerical data.

First we discuss the nature of the ground-state phase transition. Whenh 6= 0, the
uniform magnetic field breaks the spin-reversal symmetry held in theh = 0 case, so that
the nature of the phase transition may be different from that in theh = 0 case. Throughout
this comment we restrict ourselves to theh = 0 case on whichAM focused. Figure 1
shows the schematic phase diagram ofH(1, h = 0, hs), which is essentially the same
as AM’s figure 3. They stated that the phase transition between theAF phase and theML

phase (path 1) is of second order. We believe, however, that it is of infinite order, i.e.
of Kosterlitz–Thouless (KT) type. The operator coupled to the staggered magnetic field
is irrelevant in theML region and is relevant in theAF region. The excitation spectrum
is either massless or massive depending on whether this operator is irrelevant or relevant.
This mass-generating mechanism is the same as that of the sine–Gordon model, asAM
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Figure 1. Schematic ground-state phase diagram of the
Hamiltonian H(1, h = 0, hs). The antiferromagnetic, massless
and ferromagnetic phases are indicated byAF, ML and FE,
respectively. TheAF–ML transition along path 1 is of theKT type
and that along path 2 is of second order. The transition to theFE

state is of first order.

themselves noted. Thus theAF–ML transition of path 1 is of theKT type, which is seen
from the well known properties of the sine–Gordon model [2].

We can also observe theAF–ML transition along path 2. This transition is different from
that of path 1, because it is due to the vanishing of the coefficient (which is proportional
to the magnitude of the staggered field) of the relevant operator coupled to the staggered
magnetic field. Thus this transition is of second order and its critical exponents vary
continuously.

Next we discuss the method to determine theAF–ML phase boundary from the finite-size
numerical data obtained by the numerical diagonalization of the Hamiltonian.AM used the
M → ∞ extrapolation of the sequences(1(M), h(M), h(M)

s ) (M = 2, 4, . . .) obtained by
solving the so-called phenomenological renormalization group (PRG) equation

MGM(1, h, hs) = (M − 2)GM−2(1, h, hs) (2)

whereGM(1, h, hs) is the gap of the Hamiltonian (1) withM sites. At the fixed point of
the PRG equation (2), the gapGM behaves as

GM ∼ M−1 (3)

in the lowest order ofM−1. If the transition is of second order, thePRG method leads to
the correct transition point because the system is massless and equation (3) holds only at
the transition point. In the case of theKT transition, on the other hand, care must be taken
for the application of thePRG method. Since the present system is massless not only at the
AF–ML transition line but also in the whole of theML region, thePRGrelation (2) is satisfied
in the lowest order ofM−1 in the whole of theML region. Where is the fixed point of the
PRG equation? It is controlled by the lowest-order correction to equation (3) which may
come from the operator coupled to the staggered magnetic field. Thus the fixed point of the
PRG equations located at the point where the staggered field vanishes. If this is the case,
the transition point obtained through thePRG method is brought over from theAF–ML point
to the hs = 0 line. Then the simple application of thePRG method to theKT transition is
dangerous. In the present problem, of course, there may be other corrections which make
the situation more complicated.

Let us demonstrate that thePRG solution may lead to an incorrect critical point for
the KT transition [3]. Whenh = hs = 0, as is well known, the Hamiltonian (1) is exactly
solvable by the use of the Bethe ansatz method. Its ground state is either theAF state or
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the ML state depending on whether1 < −1 or −1 6 1 < 1. The excitation gap in theAF

state behaves as [4, 5]

G(1) ' 8π exp

(
− π2

2
√

2(|1| − 1)

)
(1 → −1 − 0) (4)

which indicates that thisAF–ML transition at1 = −1 is of theKT type. If we apply thePRG

method to the finite-size numerical data of the excitation gap, we obtain1c = −0.507 06
(M = 10, 12) and 1c = −0.475 64 (M = 18, 20). Therefore the critical value of1c

obtained from thePRG equation goes far off from the exact value1c = −1 asM increases.
Where is the fixed point of thePRG equation in this case? Since the mass in theAF state is
generated by the operator coming from the Umklapp scattering between the Jordan–Wigner
fermions originated from theSz

i S
z
i+1 term in the spin Hamiltonian, the fixed point is theXY

point (1 = 0) where there is noSz
i S

z
i+1 term resulting in the vanishing of the interaction

between fermions. Thus thePRG solution is brought over from the true transition point
1c = −1 to theXY point. This example was also noticed by Bonner and Müller [6] and
by Sólyom and Ziman [7].
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